ANSWER TO THE MIDTERM EXAMINATION

SOLUTION TO THE 1ST QUESTION

(a). A PDE problem is called to be well-posed if it has the following three properties that:
(1) Existence: The problem has a solution;
(2) Uniqueness: There is at most one solution;
(3) Stability: Solution depends continuously on the data given in the problem.
(b). No, the problem is not well-posed. Let $v=\frac{d u}{d x}$, then

$$
\frac{d v}{d x}+v=1, \quad x \in(0,1)
$$

The general solution to this equation is

$$
v(x)=C e^{-x}+1,
$$

where C is a constant independent of x. However, by the boundary condition of u, we have $v(0)=1$ and $v(1)=0$, which imples C satisfies

$$
\left\{\begin{array}{l}
C+1=1, \\
C e^{-1}+1=0
\end{array}\right.
$$

which has no solution.
(c). We show the uniqueness and continuous dependence of solutions in two ways: (Maximum principle)
Claim 1 (Continuous dependence). Suppose $u(t, x) \in C^{1,2}((0, T) \times(0,1))$ is a solution to the problem, and $\phi(x)$ is a continous function, then there exists a constant C which only depends on T such that

$$
\sup _{(0, T) \times(0,1)}|u| \leq C \sup _{(0,1)}|\phi| \text {. }
$$

Claim 2 (Uniqueness). Suppose $u, v \in C^{1,2}((0, T) \times(0,1))$ are two solutions to the problem, and $\phi(x)$ is a continous function, then $u \equiv v$.

It suffices to prove Claim 1.
Let $U(t, x)=e^{-3 t-\left(x-\frac{1}{2}\right)^{2}} u(t, x)$, then

$$
\begin{cases}\partial_{t} U-\partial_{x}^{2} U-4\left(x-\frac{1}{2}\right) \partial_{x} U+\left[1+4\left(x-\frac{1}{2}\right)^{2}\right] U=0, & (t, x) \in(0, T) \times(0,1) \\ -U(t, 0)+\partial_{x} U(t, 0)=0, \quad U(t, 1)+\partial_{x} U(t, 1)=0, & t \in(0, T) \\ U(0, x)=e^{-\left(x-\frac{1}{2}\right)^{2}} \phi(x), & x \in[0,1]\end{cases}
$$

Suppose U attains its nonnegative maximum at interior point $\left(t_{0}, x_{0}\right) \in(0, T) \times$ $(0,1)$, then

$$
U\left(t_{0}, x_{0}\right) \geq 0, \quad \partial_{t} U\left(t_{0}, x_{0}\right)=0, \quad \partial_{x} U\left(t_{0}, x_{0}\right)=0, \quad \partial_{x}^{2} U\left(t_{0}, x_{0}\right) \leq 0
$$

However, by the equation satisfied by U, we find a contradiction, which implies U only attains its nonnegative maximum at $[0, T] \times\{x=0,1\} \cup\{t=0\} \times[0,1]$.

If U attains its nonegative maximum at $\left(t_{1}, 0\right) \in[0, T] \times\{x=0\}$, then

$$
U\left(t_{1}, 0\right) \geq 0, \quad \partial_{x} U\left(t_{1}, 0\right) \leq 0
$$

then by the boundary condition, we find

$$
U\left(t_{1}, 0\right)=0
$$

If U attains its nonegative maximum at $\left(t_{2}, 1\right) \in[0, T] \times\{x=1\}$, then

$$
U\left(t_{2}, 0\right) \geq 0, \quad \partial_{x} U\left(t_{2}, 1\right) \geq 0
$$

then by the boundary condition, we find

$$
U\left(t_{2}, 1\right)=0
$$

If U attains its nonegative maximum at $\left(0, x_{1}\right) \in\{t=0\} \times[0,1]$, then

$$
U\left(0, x_{1}\right) \leq \max \left\{0, e^{-\left(x-\frac{1}{2}\right)^{2}} \phi(x)\right\}
$$

Therefore we have

$$
\sup _{(0, T) \times(0,1)} U \leq \max \left\{0, C \sup _{(0,1)} \phi\right\} .
$$

By a similar arguement, we have

$$
\sup _{(0, T) \times(0,1)} U \geq \max \left\{0, C \sup _{(0,1)}-\phi\right\} .
$$

Therefore we have

$$
\sup _{(0, T) \times(0,1)}|u| \leq C \sup _{(0,1)}|\phi| .
$$

(Energy method)

Claim 3 (Continuous dependence). Suppose $u(t, x) \in C^{1,2}((0, T) \times(0,1))$ is a solution to the problem, and $\phi(x)$ is a continous function, then there exists a constant C which only depends on T such that

$$
\sup _{0 \leq t \leq T} \int_{0}^{1}|u(t, x)|^{2} d x+\int_{0}^{T} \int_{0}^{1}\left|u_{x}(t, x)\right|^{2} d x d t \leq C \int_{0}^{1}|\phi(t, x)|^{2} d x
$$

Claim 4 (Uniqueness). Suppose $u, v \in C^{1,2}((0, T) \times(0,1))$ are two solutions to the problem, and $\phi(x)$ is a continous function, then $u \equiv v$.

It suffices to prove Claim 3.
Multiplying u to both sides of the equation and integrating the resultant with respect to (t, x) over $(0, T) \times(0,1)$, we have

$$
\int_{0}^{1} \frac{1}{2}|u(t, x)|^{2} d x-\int_{0}^{T} \int_{0}^{1}\left(u(t, x) u_{x}(t, x)\right)_{x}-\left|u_{x}(t, x)\right|^{2} d x d t=\int_{0}^{1} \frac{1}{2}|u(0, x)|^{2} d x .
$$

Then by the initial condition and boundary condition, we have

$$
\int_{0}^{1} \frac{1}{2}|u(t, x)|^{2} d x+\int_{0}^{T} \int_{0}^{1}\left|u_{x}(t, x)\right|^{2} d x d t=\int_{0}^{1} \frac{1}{2}|\phi(x)|^{2} d x .
$$

SOLUTION TO THE 2ND QUESTION

(a). For arbitrary $B_{\rho}(x) \subset \Omega$, denote $n(x)$ to be the outward normal vector at $x \in \partial B_{\rho}(x)$, then we have

$$
\begin{aligned}
\int_{B_{\rho}(x)} \Delta v(y) d y & =\int_{\partial B_{\rho}(x)} \nabla v(y) \cdot n(y) d S_{y} \\
& =\rho^{n} \int_{|w|=1} \nabla v(x+\rho w) \cdot w d w \\
& =\rho^{n} \int_{|w|=1} \frac{\partial v(x+\rho w)}{\partial \rho} d w \\
& =\rho^{n} \frac{\partial}{\partial \rho} \int_{|w|=1} v(x+\rho w) d w
\end{aligned}
$$

which implies

$$
\frac{\partial}{\partial \rho} \int_{|w|=1} v(x+\rho w) d w \geq 0
$$

integrating the above inequality from 0 to r, we have

$$
\int_{|w|=1} v(x) d w \leq \int_{|w|=1} v(x+r w) d w
$$

therefore

$$
v(x) \leq \frac{3}{4 \pi r^{3}} \int_{B_{r}(x)} v(y) d y
$$

(b). Denote $M=\max _{\bar{\Omega}} v(x)$, and define $\Omega_{M}=\{x \in \Omega: v(x)=M\}$. Then since for arbitrary $x \in \Omega_{M}$,

$$
v(x) \leq \frac{3}{4 \pi r^{3}} \int_{B_{r}(x)} v(y) d y, \quad \forall B_{r}(x) \subset \Omega
$$

which implies x is a interior point of Ω_{M}, therefore Ω_{M} is open, since u is continous, Ω_{M} is also relatively closed in Ω. Suppose v is not constant and it attains its maximum value only in Ω, then Ω_{M} is not empty, therefore $\Omega_{M}=\Omega$ which means v is constant, a contradiction! Therefore

$$
\max _{\bar{\Omega}} v(x)=\max _{\partial \Omega} v(x)
$$

solution to the 3RD question

(a). By direct computation,

$$
\begin{aligned}
\left(\partial_{t}-\partial_{x}^{2}\right) \log h & =\frac{\partial_{t} h}{h}-\frac{\partial_{x}^{2} h}{h}+\frac{\left|\partial_{x} h\right|^{2}}{h^{2}} \\
& =\frac{\left|\partial_{x} h\right|^{2}}{h^{2}}, \\
\left(\partial_{t}-\partial_{x}^{2}\right) h \log h & =\log h \partial_{t} h+\partial_{t} h-\log h \partial_{x}^{2} h-\partial_{x}^{2} h-\frac{\left|\partial_{x} h\right|^{2}}{h} \\
& =-\frac{\left|\partial_{x} h\right|^{2}}{h}
\end{aligned}
$$

$$
\begin{aligned}
\left(\partial_{t}-\partial_{x}^{2}\right) \frac{\left|\partial_{x} h\right|^{2}}{h}= & -\frac{\left|\partial_{x} h\right|^{2} \partial_{t} h}{h^{2}}+\frac{2 \partial_{x} h \partial_{x t} h}{h}-\partial_{x}\left(-\frac{\left|\partial_{x} h\right|^{3}}{h^{2}}+\frac{2 \partial_{x} h \partial_{x}^{2} h}{h}\right) \\
= & -\frac{\left|\partial_{x} h\right|^{2} \partial_{t} h}{h^{2}}+\frac{2 \partial_{x} h \partial_{x t} h}{h} \\
& -\left(\frac{2\left|\partial_{x} h\right|^{4}}{h^{3}}-\frac{3\left|\partial_{x} h\right|^{2} \partial_{x}^{2} h}{h^{2}}-\frac{2\left|\partial_{x} h\right|^{2} \partial_{x}^{2} h}{h^{2}}+\frac{2\left|\partial_{x}^{2} h\right|^{2}}{h}+\frac{2 \partial_{x} h \partial_{x}^{3} h}{h}\right) \\
= & -2 h\left|\frac{\partial_{x}^{2} h}{h}-\frac{\left|\partial_{x} h\right|^{2}}{h^{2}}\right|^{2}
\end{aligned}
$$

(b). By direct computation,

$$
\begin{aligned}
\frac{d}{d t} H(t) & =\int_{0}^{2 \pi} \partial_{t}[h(t, x) \log (h(t, x))] d x \\
& =\int_{0}^{2 \pi} \partial_{x}[(\log (h(t, x))+1) \partial h(t, x)]-\frac{\left|\partial_{x} h(t, x)\right|^{2}}{h(t, x)} d x \\
& =-\int_{0}^{2 \pi} \frac{\left|\partial_{x} h(t, x)\right|^{2}}{h(t, x)} d x \\
& \leq 0, \\
\frac{d^{2}}{d t^{2}} H(t)= & \int_{0}^{2 \pi} \partial_{t}^{2}[h(t, x) \log (h(t, x))] d x \\
= & \int_{0}^{2 \pi} \partial_{t x}[(\log (h(t, x))+1) \partial h(t, x)]-\partial_{t}\left[\frac{\left|\partial_{x} h(t, x)\right|^{2}}{h(t, x)}\right] d x \\
= & \int_{0}^{2 \pi}-\partial_{x}^{2}\left[\frac{\left|\partial_{x} h(t, x)\right|^{2}}{h(t, x)}\right]+2 h\left|\frac{\partial_{x}^{2} h}{h}-\frac{\left|\partial_{x} h\right|^{2}}{h^{2}}\right|^{2} d x \\
= & \int_{0}^{2 \pi} 2 h\left|\frac{\partial_{x}^{2} h}{h}-\frac{\left|\partial_{x} h\right|^{2}}{h^{2}}\right|^{2} d x
\end{aligned}
$$

$$
\geq 0
$$

(c).
(i). Integrate both sides of the equation with respect to x over $[0,2 \pi]$, we have

$$
\frac{d}{d t} \int_{0}^{2 \pi} h(t, x) d x=0
$$

which implies

$$
\int_{0}^{2 \pi} h(t, x) d x=\int_{0}^{2 \pi} h_{0}(x) d x=1
$$

(ii). By direct computation,

$$
\begin{aligned}
\frac{d F}{d t} & =\int_{0}^{2 \pi} \partial_{t}\left[\frac{\left|\partial_{x} h(t, x)\right|^{2}}{h(t, x)}\right] d x \\
& =\int_{0}^{2 \pi} \partial_{x}^{2}\left[\frac{\left|\partial_{x} h(t, x)\right|^{2}}{h(t, x)}\right]-2 h\left|\frac{\partial_{x}^{2} h}{h}-\frac{\left|\partial_{x} h\right|^{2}}{h^{2}}\right|^{2} d x \\
& =-\int_{0}^{2 \pi} 2 h\left|\frac{\partial_{x}^{2} h}{h}-\frac{\left|\partial_{x} h\right|^{2}}{h^{2}}\right|^{2} d x
\end{aligned}
$$

therefore

$$
\frac{d F}{d t}+2 J=0
$$

(iii). By direct computation,

$$
\begin{aligned}
A(\lambda) & =\int_{0}^{2 \pi} h(t, x)\left(\left|\frac{\partial_{x}^{2} h(t, x)}{h(t, x)}-\frac{\left|\partial_{x} h(t, x)\right|^{2}}{h(t, x)}\right|^{2}-2 \lambda\left(\frac{\partial_{x}^{2} h(t, x)}{h(t, x)}-\frac{\left|\partial_{x} h(t, x)\right|^{2}}{h(t, x)}\right)+\lambda^{2}\right) d x \\
& =J-2 \lambda F+\lambda^{2} \\
& =(\lambda-F)^{2}+J-F^{2}
\end{aligned}
$$

since $A(\lambda) \geq 0$, therefore let $\lambda=F$, we have

$$
J-F^{2} \geq 0
$$

(d). By direct computation,

$$
\begin{aligned}
\frac{d^{2} N(t)}{d t^{2}} & =-2 \exp (-2 H(t)) \frac{d^{2} H(t)}{d t^{2}}+4\left|\frac{d H(t)}{d t}\right|^{2} \exp (-2 H(t)) \\
& =4 \exp (-2 H(t))\left(-\int_{0}^{2 \pi} h\left|\frac{\partial_{x}^{2} h}{h}-\frac{\left|\partial_{x} h\right|^{2}}{h^{2}}\right|^{2} d x+\left|\int_{0}^{2 \pi} \frac{\left|\partial_{x} h(t, x)\right|^{2}}{h(t, x)} d x\right|^{2}\right) \\
& =4 \exp (-2 H(t))\left(J-F^{2}\right) \\
& \geq 0
\end{aligned}
$$

(e). Since

$$
\frac{d}{d t}\left(\frac{1}{u}\right) \leq-K
$$

then integrate the above inequality with respect to t over $[0, T]$ for arbitrary $T \geq 0$, we have

$$
\frac{1}{u(T)}-\frac{1}{u(0)} \leq-K T
$$

which implies

$$
u(T) \leq \frac{u(0)}{1+K u(0) T}, \quad \forall T \geq 0
$$

(f). Since

$$
\frac{d F}{d t}+2 J=0
$$

and $J \geq F^{2}$, then

$$
\frac{d F}{d t}+2 F^{2} \leq 0
$$

therefore

$$
F(t) \leq \frac{F(0)}{1+2 F(0) t}, \quad \forall T \geq 0
$$

For $t \geq 1$, let $C=\frac{1}{2}$, then we have

$$
F(t) \leq \frac{C}{t}, \quad \forall t \geq 1
$$

which implies

$$
\int_{0}^{2 \pi} \frac{\left|\partial_{x} h(t, x)\right|^{2}}{h(t, x)} d x \leq \frac{C}{t}, \quad \forall t \geq 1
$$

