ANSWER TO THE MIDTERM EXAMINATION

SOLUTION TO THE 1ST QUESTION

(a). A PDE problem is called to be well-posed if it has the following three properties
that:

(1) Existence: The problem has a solution;
(2) Uniqueness: There is at most one solution;
(3) Stability: Solution depends continuously on the data given in the problem.

(b). No, the problem is not well-posed. Let v = dw, then
d
£+v: 1, z€(0,1).

The general solution to this equation is
v(z)=Ce ™™ +1

where C' is a constant independent of . However, by the boundary condition of u,
we have v(0) =1 and v(1) = 0, which imples C' satisfies

C+1=1,
Ce l+1=0,

(¢). We show the uniqueness and continuous dependence of solutions in two ways:
(Maximum principle)

which has no solution.

Claim 1 (Continuous dependence). Suppose u(t, ) € C12((0,T) x (0,1)) is a solu-
tion to the problem, and ¢(x) is a continous function, then there exists a constant
C which only depends on T such that

sup  |u| < C'sup |¢].
(0,7)x(0,1) (0,1)

Claim 2 (Uniqueness). Suppose u,v € C12((0,T) x (0,1)) are two solutions to the
problem, and ¢(x) is a continous function, then u = v.

It suffices to prove Claim 1.
2
Let U(t,z) = e3t—(v-3) u(t, x), then

&Uf%U—4@—%WJﬁ+P+4 fgzyy (t,x) € (0,T) x (0,1),
—U(t,0) + 8,U(t,0) =0, U(t, 1)+ ,U(t, 1) te (0,T),
U,z) = 67(3”7%):25(:5), x € [0,1].

Suppose U attains its nonnegative maximum at interior point (¢9,zo) € (0,7T) x
(0,1), then

Ulto,z0) >0, OU(to,z0) =0, 9,U(to,0) =0, 02U(tg,x0) <O0.
1
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However, by the equation satisfied by U, we find a contradiction, which implies U
only attains its nonnegative maximum at [0,7] x {x = 0,1} U{t = 0} x [0, 1].
If U attains its nonegative maximum at (¢1,0) € [0,7] X {z = 0}, then

U(t1,0) >0, 0,U(t1,0) <0,
then by the boundary condition, we find
U(t1,0) = 0.
If U attains its nonegative maximum at (¢2,1) € [0,T] x {z = 1}, then
U(t2,0) >0, 0,U(t2,1) >0,
then by the boundary condition, we find
Ul(te,1) = 0.
If U attains its nonegative maximum at (0,21) € {t = 0} x [0, 1], then
U(0,z1) < max {O, e_(m_%fgb(z)} .
Therefore we have

sup U < max{0,C sup ¢}.
(0,T)x(0,1) (0,1)

By a similar arguement, we have

sup U > max{0,C sup —¢}.
(0,T)x(0,1) (0,1)

Therefore we have

sup |u| < Csup |¢@|.
(0,T)x(0,1) (0,1)

(Energy method)

Claim 3 (Continuous dependence). Suppose u(t,z) € CH2((0,7T) x (0,1)) is a solu-
tion to the problem, and ¢(z) is a continous function, then there exists a constant
C which only depends on 7" such that

1 T 1
sup / |u(t,x)\2dac+/ / lug (t, )| dadt < C’/ |p(t, x)|*dx.
0 o Jo 0

0<t<T

Claim 4 (Uniqueness). Suppose u,v € C12((0,T) x (0,1)) are two solutions to the
problem, and ¢(x) is a continous function, then u = v.

It suffices to prove Claim 3.
Multiplying u to both sides of the equation and integrating the resultant with
respect to (t,x) over (0,7) x (0,1), we have

1 , T 1 , - 11 )
/O Slu(t, o) dx—/o /0(u(t,a:)u$(t,x))w—|uw(t,x)\ d:cdt—/o 2 lu(0, )P

Then by the initial condition and boundary condition, we have

1 T 1
/ f|u(t,x)|2dx+/ / |um(t7x)\2dxdt:/ —|o(x)|?d.
0 2 o Jo 0 2
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SOLUTION TO THE 2ND QUESTION

(a). For arbitrary B,(z) C (2, denote n(x) to be the outward normal vector at
x € 0B,(x), then we have

/ Ao(y)dy = / Vo(y) - n(y)ds,
B,(x) OB, (x)

=p" / Vo(z + pw) - wdw
|w|=1
[ e,
|w]|=1 ap
n O

=p" = v(z + pw)duw,
p Jyw|=1

which implies
7
— v(x + pw)dw > 0,
0p Jjw|=1

integrating the above inequality from 0 to r, we have

/le—l V@ < /|w|_1 v(z +rw)dw,

3
< dy.
= 473 /BT(@U(y) Y

(b). Denote M = maxwv(x), and define Qpy = {z € Q : v(x) = M}. Then since for
Q
arbitrary x € Qyy,

therefore

v(x)

3
v(z) < 4mr3

/ oly)dy, VB, (z) C O,
Br(m)

which implies x is a interior point of Q;;, therefore 2, is open, since u is continous,
Qpr is also relatively closed in 2. Suppose v is not constant and it attains its
maximum value only in €2, then ), is not empty, therefore {23, = 2 which means
v is constant, a contradiction! Therefore

mng(m) = max v(z).

SOLUTION TO THE 3RD QUESTION

(a). By direct computation,

Oh 02 |0,h)?

J— 2 [ —
(0y — 02) logh o . + e
|0:h[?
= h2 3
2
(0r — 0%)hlog h =log hdih + Oth — log hdZh — O2h — @

o
o
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o0k 1020k | 20,hduh ., |0:hP | 20,h9%h
0 =)=~ = JE e T )
_[0:hPPoh | 20,h9uh
N h? h
_(200:h]*  3]0:hP0Zh  2|0,h[*0%h N 2|02h|? N 20,h2h
h3 h? h? h h
2 22
__op 9zh [0z
h h?
(b). By direct computation,
2
LHw) = [ alhit, ) os(h(t, 2))da
0

e i RN 0
_/0 9z [(log(h(t, z)) + 1)0h(t, x)] h(t, z) a

27 2
:_/ Dbt )
0

h(t, )
SO)
d2 27
0
2 2
|02h(t, z)]
— L[(og(h(t, 1oh(t, )] — 8, | LTI,
[ ultos(itt.a)) + von(e.o) - o | ZHES o
27 2 2 2|2
5 [10zh(t, 2)] 0%h  |04hl
= _o? (= L 4 g _
e[| - e
2 2 22
02h  |0zhl|
= 2h |- — d
/0 nooow |
>0.
(©)-
(i). Integrate both sides of the equation with respect to x over [0, 27], we have
d 2m
— h(t,x)dx =
dt 0 ( 71’) X 07
which implies
2 2m
/ h(t,a:)dx:/ ho(z)dz = 1.
0 0
(#i). By direct computation,
dF 2T [10gh(t, x)]?
i Gl 521 | g
i~ oS
27 2 2 2|2
5 [10:h(1, )| 9zh  |9:h|
- %ML ogp | %l _ d
/0 ax{ h(t, ) N
27 2 22
02h  |04hl
- _ op | L=t
/0 h h 2 dz,
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therefore iF
— +2J=0.
dt +

(i4i). By direct computation,

an = [ " h(t,z) ( Rhlt,x) _ |0uh(t,2)P

h(t,x) h(t,x)
=J — 2\F + \?

=\—F)*+J - F?
since A(A) > 0, therefore let A = F, we have
J—F?>0.

? O2h(t,x)  |0:h(t, )P | s
‘”(h(m) = hta) >“ e

(d). By direct computation,

d*N(t)
dt?

exp(—2H (t))

27 2
/ Dbt )2
0 h’(tVT)

= —2exp(—2H(t))

d*H(t) A ' dH (t)
dt? dt

27 2 2
=4 exp(—2H(t)) (—/ h Osh _ |0:1]
0

h h2
=4exp(—2H(t))(J — F?)

>0.
d (1
L () <k
dt (u) -

then integrate the above inequality with respect to ¢ over [0, T for arbitrary T > 0,
we have

2
dx +

)

(e). Since

1 1
— < _KT
w(T)  w(0) ’
which implies
wm < —O " ursg
= 1+ Ku(0)T" =
(f). Since
dF
— +2J=0
ar " ’
and J > F?, then
dF
— +2F%<0
ar -
therefore F(0)
F)< ————~_ . VYT >0.
()*1+2F(O)t’ -
Fort>1,let C = %, then we have
F(t) < %, Vi > 1,

which implies

27 2
/ [0ht D) o C s
0 h(t,x) t



